Sylodyn_® HRB HS 6000 Start Sheet Material closed-cell PU elastomer (polyurethane) Colour dark blue #### Standard delivery dimension Thickness: 12.5 mm / 25 mm Mat: 1.2 m wide, 1.5 m long Other dimensions as well as punched parts on request. | Range of use | Compressive load | Deformation | |---|---|--------------| | | shape factor-dependent, the specified values apply to shape factor of q = 3 | | | Static range of use (static loads) | up to 6.0 N/mm² | approx. 12 % | | Dynamic range of use (static and dynamic loads) | up to 9.0 N/mm² | approx. 15 % | | Load peaks
(occasional, brief loads) | up to 18.0 N/mm² | approx. 25 % | #### Sylodyn® HRB HS range Static range of use | Material properties | | Test methods | Comment | |------------------------------------|-----------------------|--------------------|--| | Mechanical loss factor | 0.07 | DIN 535131 | temperature-, frequency-, specific load- and amplitude-dependent | | Compression set ² | < 5 % | EN ISO 1856 | 25% deformation, 23°C, 72h, 30 min after removal of load | | Static shear modulus³ | 3.5 N/mm ² | DIN ISO 18271 | at a pretension of 6.0 N/mm² | | Dynamic shear modulus ³ | 4.2 N/mm² | DIN ISO 18271 | at a pretension of 6.0 N/mm², 10 Hz | | Coefficient of friction (steel) | ≥0.6 | Getzner Werkstoffe | dry, static friction | | Coefficient of friction (concrete) | ≥ 0.7 | Getzner Werkstoffe | dry, static friction | | Thermal conductivity | 0.17 W/(mK) | DIN EN 12664 | | | Temperature range | -30 °C to 70 °C | | short term higher temperatures possible | | Flammability | class E | EN ISO 11925-2 | normal combustible, EN 13501-1 | ¹ Measurement/evaluation in accordance with the relevant standard All information and data is based on our current knowledge. The data can be applied for calculations and as guidelines, are subject to typical manufacturing tolerances and are not guaranteed. Material properties as well as their tolerances can vary depending on type of application or use and are available from Getzner on request. Further information can be found in VDI Guideline 2062 (Association of German Engineers) as well as in glossary. Further characteristic values on request. 1 ² The measurement is performed on a density-dependent basis with differing test parameters ³ Values apply to shape factor q = 3 ## #### Load deflection curve Fig. 1: Quasi-static load deflection curve for different bearing thicknesses Quasi-static load deflection curve measured with a loading rate of $0.6 \, \text{N/mm}^2/\text{s}$. Testing between sandblasted, flat steel-plates; recording of the 1st load, with filtered starting range in accordance with ISO 844, testing at room temperature. Shape factor: q = 3 #### Modulus of elasticity Fig. 2: Load dependency of the static and dynamic modulus of elasticity Quasi-static modulus of elasticity as tangential modulus from the load deflection curve. Dynamic modulus of elasticity from sinusoidal excitation with a velocity level of 100 dBv re. 5 · 10⁻⁸ m/s corresponding to a vibration amplitude of 0.22 mm at 10 Hz and 0.08 mm at 30 Hz. Measurement in accordance with DIN 53513 Shape factor: q = 3 #### **Natural frequencies** Fig. 3: Natural frequencies for different bearing thicknesses Natural frequencies of a vibratory system with a single degree of freedome, consisting of a mass and an elastic bearing made of Sylodyn_® HRB HS 6000 on a rigid surface. Parameter: thickness of the Sylodyn_® bearing Shape factor: q = 3 #### Static creep behaviour Fig. 4: Deformation under static load depending on time Deformation under consistent loading. Parameter: permanent static load Shape factor: q = 3 ### Dependency on amplitude Fig. 5: Dynamic modulus of elasticity depending on the vibration amplitude Typical dependency of the dynamic modulus of elasticity on the amplitude of vibration. Sylodyn® HRB HS 6000 materials exhibit a negligible dependency of amplitude. #### Influence of the shape factor The graphs show the material properties at different shape factors. Fig. 6: Static range of use in relation to the shape factor Fig. 7: Deflection³ in relation to the shape factor Fig. 8: Dynamic modulus of elasticity $^{\rm 3}$ at 10 Hz in relation to the shape factor Fig. 9: Natural frequency 3 in relation to the shape factor $^{^{3}}$ Reference value: specific load 6.0 N/mm 2 , shape factor q = 3