Sylodamp_® SP 1000 1880 Data Sheet Material mixed-cell PU elastomer (polyurethane) Colour traffic green ### Standard delivery dimension Thickness: 12.5 mm / 25 mm Mat: 1.5 m wide, 1.0 m long Other dimensions, punched and moulded parts on request. | Range of use | Compressive load | Deformation | |---|--|---------------| | | Shape factor-dependent,
the specified values apply to shape factor of q=3 | | | Static range of use (static loads) | up to 0.5 N/mm² | approx. 4.8 % | | Impact range of use (dynamic loads) | | up to 40% | | Load peaks
(occasional, brief loads) | up to 5 N/mm² | approx. 60 % | | Material properties | | Test methods | Comment | |------------------------------------|-----------------------|-------------------------|--| | Mechanical loss factor | 0.46 | DIN 535131 | temperature-, frequency-, specific load- and amplitude-dependent | | Impact resilience | 15 % | EN ISO 83071 | | | Specific energy absorption | up to 84 mJ/mm² | Getzner Werkstoffe | at a thickness of 25 mm | | Compression hardness ³ | 1.0 N/mm² | EN ISO 8441 | at 10 % linear compression, 1st load cycle | | Compression set ² | < 5 % | EN ISO 1856 | 25% deformation, 23°C, 72h, 30 min after removal of load | | Static shear modulus ³ | 1.9 N/mm² | DIN ISO 18271 | at a pretension of 1.0 N/mm² | | Dynamic shear modulus ³ | 5 N/mm² | DIN ISO 18271 | at a pretension of 1.0 N/mm², 10 Hz | | Min. tensile stress at rupture | 3.2 N/mm ² | DIN EN ISO 527-3/5/5001 | | | Min. tensile elongation at rupture | 160 % | DIN EN ISO 527-3/5/5001 | | | Abrasion ² | ≤ 1300 mm³ | DIN ISO 46491 | load 10 N | | Coefficient of friction (steel) | ≥ 0.5 | Getzner Werkstoffe | dry, static friction | | Coefficient of friction (concrete) | ≥ 0.7 | Getzner Werkstoffe | dry, static friction | | Specific volume resistivity | > 10¹² Ω·cm | DIN IEC 60093 | dry | | Thermal conductivity | 0.11 W/mK | DIN EN 12667 | | | Temperature range ⁴ | -30°C to 70°C | | optimum damping range from 5°C to 40°C | | Flammability | class E | EN ISO 11925-2 | normal flammable, EN 13501-1 | ¹ Measurement/evaluation in accordance with the relevant standard 3 Values apply to shape factor q = 3 All information and data is based on our current knowledge. The data can be applied for calculations and as guidelines, are subject to typical manufacturing tolerances and are not guaranteed. Material properties as well as their tolerances can vary depending on type of application or use and are available from Getzner on request. Further information can be found in VDI Guideline 2062 (Association of German Engineers) as well as in glossary. Further characteristic values on request. 1 The measurement is performed on a density-dependent basis with differing test parameters ⁴ Take account of heating caused by energy conversion # Sylodamp_® SP 1000 SP 1000 #### Load deflection curve Fig. 1: Quasi-static load deflection curve for different bearing thicknesses Quasi-static load deflection curve with a loading rate of 1% of the thickness of the unloaded sample per second. Recording of the 1st load, with filtered starting range (in accordance with ISO 844), testing at room temperature. Shape factor q = 3 ### Modulus of elasticity Fig. 2: Load dependency of the static and dynamic modulus of elasticity Quasi-static modulus of elasticity as tangential modulus from the load deflection curve. Dynamic modulus of elasticity from sinusoidal excitation at a vibration velocity of 100 dBv re. 5·10-8 m/s (corresponding to a vibration amplitude of 0.22 mm at 10 Hz and 0.08 mm at 30 Hz). Measurement in accordance with DIN 53513 Shape factor q = 3 ## **Natural frequencies** Fig. 3: Natural frequencies for different bearing thicknesses Natural frequencies of a vibratory system with a single degree of freedom, consisting of a mass and an elastic bearing made of Sylodamp® SP 1000 on a rigid surface. Parameter: thickness of the Sylodamp®-bearing Shape factor q = 3 # **Energy absorption** Fig. 4: Specific energy absorption for different bearing thicknesses Specific energy absorption from an impact load at an impact speed of up to 5 m/s. Drop impact test with a round, flat stamp, recording of the 1st load, testing at room temperature. Parameter: thickness of the Sylodamp®-bearing #### Influence of the shape factor The graphs show the material properties at different shape factors. Fig. 5: Static range of use in relation to the shape factor Fig. 6: Deflection ⁵ in relation to the shape factor Fig. 7: Dynamic modulus of elasticity $^{\rm 5}$ at 10 Hz in relation to the shape factor Fig. 8: Natural frequency ⁵ in relation to the shape factor Material properties can be determined using the online calculation program FreqCalc. The program can be accessed via www.getzner.com (registration necessary). ⁵ Reference values: specific load 0.5 N/mm², shape factor q = 3